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Connexive logics are logics where the following schemas are valid:

N(A > NA) (Aristotle’s Thesis)

N(NA > A) (Variant of Aristotle’s Thesis)

(A > B) > N(A > NB) (Boethius’ Thesis)

(A > NB) > N(A > B) (Variant of Boethius’ Thesis)

for a conditional > and a negation N of a propositional language L. There are several ways
to strengthen these principles (see [1]). One of the most natural way to strengthen them is to
require that [4]:

NA > A be unsatisfiable (Unsat1)

A > NA be unsatisfiable (Unsat2)

A > B and A > NB not be simultaneously satisfiable. (Unsat3)

Recently Omori and Kapsner have suggested in [5] to express such requirements in the object
language using the following schemas:

(NA > A) > ⊥ and (NA > A) > ⊥ are valid (Super-(Bot)-Aristotle)

(A > B) > ((A > NB) > ⊥) and (A > NB) > ((A > B) > ⊥) are valid
(Super-(Bot)-Boethius)

for some ⊥ that expands the language L, i.e., ⊥ is not definable in L.
In this paper we discuss three alternative ways to represent (Unsat1)–(Unsat3) in the object

language without expanding it. We frame our discussion in the context of Relating Logics used
to define Boolean Connexive Logics [3], [2], and we compare our approach to the one of Omori
and Kapsner.
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